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We give bounds on finite-volume expectations for a set of boundary conditions 
containing the support of any tempered Gibbs state and prove a theorem 
connecting the behavior of Gibbs states to the differentiability of the pressure for 
continuum statistical mechanical systems with long-range superstable potentials. 
Convergence of grand canonical Gibbs states is also studied. 
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1, I N T R O D U C T I O N  

For a grand canonical system of particles, a first-order phase transition is 
said to occur if the pressure is not continuously differentiable with respect 
to chemical potential. First-order phase transitions are also generally 
associated with multiple infinite-volume Gibbs states. The existence of 
multiple Gibbs states, however, does not imply a first-order phase transi- 
tion, as can be seen in the case of the two-dimensional Ising antiferromagnet 
(or, more appropriately, the equivalent lattice gas. t8) Rigorous connections, 
for lattice models, between the behavior of Gibbs states and the differentia- 
bility of the pressure or free energy with respect to various parameters have 
been made by a number of authors/1 7~ 

In this paper we consider long-range, superstable interactions in R d. 
We prove that a first-order phase transition occurs at a point in phase 
space if and only if multiple, translation-invariant, tempered Gibbs states 
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exist at that point and they yield strictly different expectations for the 
density of particles. An analogous statement is proven for differentiation 
with respect to the inverse temperature. Our results therefore extend to a 
broad class of continuum models a rigorous mathematical connection 
between two widely used criteria to establish phase transitions. To prove 
the main theorem, we show how finite-volume expectations of particle 
density and energy may be bounded in the presence of an arbitrary external 
configuration in the support set of any tempered Gibbs state. We also 
prove a convergence result for grand canonical, tempered Gibbs states 
when the respective temperatures or chemical potentials converge. 

We note that the conclusions of our main theorem are known for a 
large class of lattice models with compact configuration space and bounded 
Hamiltonians.(6, 7,3) The methods used in those references are not available 
here, since our Hamiltonians are unbounded and configurations of particles 
may have arbitrarily large local densities. Instead we use measure-theoretic 
techniques and especially the probability estimates of Ruelle. (9) Lebowitz 
and Presutti (2) obtained somewhat related results, using different methods, 
for models with unbounded spin spaces, but the conditions they impose 
on the Hamiltonian are not satisfied by the usual models of classical 
continuum statistical mechanics. 

An extended version of this paper is available from the authors on 
request. 

2. N O T A T I O N  A N D  P R E L I M I N A R Y  R E S U L T S  

For a Borel measurable subset A ~ ~a let X(A) denote the set of all 
locally finite subsets of A. X(A) represents configurations of identical 
particles in A. We let ~ debote the empty configuration. Let B a be the 
a-field on X(A) generated by all sets of the form {seX(A): Is c~ BI = m}, 
where B runs over all bounded Borel subsets of A, m runs over the set 
of nonnegative integers, and [' ! denotes cardinality. We let (f2, S ) =  
(X(Rd), BRd ). For a configuration x ~ t2 let xa = x c~ A. 

A Hamiltonian H is an S measurable map from the set of finite 
configurations f2F in f2 to ( - 0% oo ] of the form 

H(x) = ~ q)(x ~, x j) -h lx[  (2.1) 
i ~ j  

where the function ~0 is a pair potential and where h e R. The configuration 
x in (2.1) is coordinatized by x =  {xl, x2,...,xlxl}. For xeX(A)  we will 
sometimes write HA(x) instead of H(x). 

For a bounded Borel set A let IAI denote the Lebesgue measure of A. 
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The symbol ]. [ may therefore represent cardinality or Lebesgue measure, 
but the meaning will always be clear from the context. 

Define the interaction energy between x ~ X(A) and s c~ A c by 

WA(x[s)= ~ ~ q)(xi, s j) (2.2) 
i = 1  j = [  

where x = { x  1 ..... x"}, and sc~AC= {s ~ ..... sm}. We will sometimes write 
W(xls) when x and s are located in disjoint regions. Define 

HA(x[s)=HA(x)+ WA(XlS) (2.3) 

For  each i e Z d let 

Qi = {r ~ Ra: r ~ - 1/2 ~ i k < r k + 1/2, k = 1,..., d} 

so that the unit cubes {Qi} partition R d. Define f x i l -  [xoi[ = [xn Q~I. For 
a nonnegative integer k let A k be the hypercube of length 2 k -  1 centered 
at the origin in Rd; Ak is then a union of ( 2 k - 1 )  d unit cubes of the 
form Q~. We will also sometimes regard Ak as a subset of Z d by letting A k 
represent Ak n Z a. 

For i s Z  a or R e, let IIilf = [l(il, -.., ia)[I = maxklik[ be the supnorm. 
We assume throughout this paper that H satisfies the following 

conditions: 

(a) H, q~ are translation invariant. 

(b) H is superstable, (9"~~ i.e., there exist A > 0, B~> 0 such that if the 
configuration x is contained in Ak for some k, then 

O(x)>>. ~ Alx, J2-O[xi[ (2.4) 
iE Ak 

(c) H(x) is lower regular. There exists a positive function ~ on the 
nonnegative integers such that ~k(m)~< Km -a for m >i- 1, and for any A~ and 
A2 which are each finite unions of unit cubes of the form Q,., with x = A a 
and seA2, 

W(x l s )> / -  ~ ~ tP(lli-jll)]xil'[sjl (2.5) 
iEA1 j ~ A 2  

where K > 0, 2 > d are fixed. 

(d) H(x) is tempered. There exists Ro > 0 such that, with the same 
notation as in part (c), assuming A~ and A2 are separated by a distance R o 
or more, 

W(xls)<~K ~ Z [[i-Jll-~lxi['[sJ] (2.6) 
i~Al  j E A  2 
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We next define a measure for each bounded Borel set of R d. Let 
XN(A)c X(A) be the set of configurations of cardinality N in A and let 
T:AN--* XN(A ) be the map which takes the ordered N-tuple (Xl,..., XN) to 
the (unordered) set {xl ..... XN}. In a natural way T defines an equivalence 
relation on A u and XN(A) may be regarded as the set of equivalence 
classes induced by T. For  N =  1, 2, 3 .... let dUx be the projection of 
nd-dimensional Lebesgue measure onto XN(A) under the projection T: 
A N-'~ XN(A ). The measure d~ assigns mass 1 to Xo(A ) = {~5}. Define dNx 
to be the zero measure on XM(A) for M4:N. On X (A )=  U~=o X,(A) 

dn x 
v~(dx) = n[ 

n = 0  

If A c~ A = ~ ,  where A and A are Borel sets, then (X(A), BA, vA)x 
(X(A),BA, VA) may be identified with (X(AwA), Ba~a, rata) via 
xA • xa = xA w xa. In particular, for any bounded Borel set A, 

(Q, S)= (X(A), BA) • (X(AC), BAd (2. 7) 

Let J~  denote the inverse projection of B~ under the identification (2.7), 
so that B~ is a a-field on 12. 

Let A be a bounded Borel set in R a and let s be a configuration in A c. 
The finite-volume Gibbs state with boundary configuration s for H, 3 > 0, 
and h is 

exp{ -~/-t(x Is)} uAdxfs)- v.(ax) (2.8) 
ZAs) 

where ZA(s)=--ZA(fl, h, s) makes #A(dx]s) a probability measure and/~ is 
inverse temperature. When s = ~ ,  let #a(dx[ ~ )  =- pA(dx). 

The pressure p(/~, h) for H is given by 

In Zak (~ )  
3P(3, h) = P(3, h) = lim (2.9) 

Remark 2.1. The limit in (2.9) is well known to exist (9'1~ and to be 
a convex function of 3 and h for the models that we consider, and it is also 
possible to consider more general limits than described above, but this is 
as much as we will need. 

Let { ~ }  denote the specification associated with 3, h, and the 
Hamiltonian H (see ref. 3, p. 16) defined by 

rCA(A IS) = ~A' #a(dxls) (2.10) 
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where A ' =  {x tX(A) :  x v s t A } .  This specification is defined with respect 
to the se ts  {RA} as defined by Preston and is consistentJ 3) 

A probability measure # on t2 is a Gibbs state (or infinite-volume 
Gibbs state) for H,/~, and h if 

#(zrA(A Js)) = #(A) 

for every A t S and every bounded Borel set A. 
Folllowing Ruelle, <9) we define a Gibbs state # to be tempered if # is 

supported on 

V~ = ~) Vu 
N = I  

where VN= {XtO:  ~i~A~ ]Xi[ 2 <~N2rAkt for all k}. The following proposi- 
tion collects some results proved by Ruelle in ref. 9. 

Proposition 2.1 (RueI1C9)). Let A be a finite union of unit cubes of 
the form Q~. Suppose ~ D A is a bounded Borel set in R d. There exist 
constants ~, > 0 and 6, depending only on fl and h (independent of A and 
A), such that the probability that ]XA[>~ N IA[ with respect to # ~ ( d x ] ~ )  
is less than exp[ - (yNZ-~) /A[] .  The same probability estimate holds 
when #~(dx[;Z) is replaced by any tempered Gibbs state for /~, h. 
Moreover, for any /~, h, the set of translation-invariant, tempered Gibbs 
states is nonempty. 

With Proposition 2.1 it is possible to describe another support set for 
tempered Gibbs states. Let ln+ r =  max{l,  In r). Define 

U~ = {s t t~: Is,I ~< n(ln+ ]1i[1)1/2 for all i t  Z a} 
(2.11) 

U ~ = ~ )  U~ 
n ~ l  

A straightforward argument (2' ~ shows that # ( U ~ ) =  1 for any tempered 
Gibbs state #. 

The following lemma, stated without proof, will be used to control the 
effect of boundary configurations on certain expected values in the next 
section. 

Lemma 2.1. Let g > 0 and s t  U,. Then for all k sufficiently large, 
the following hold: 

(a) WAk(XIS) >~ --Dk(s)JX~Akf -- en JxAml. 

(b) ImA,(X~Am/s)l ~grl[XA,,]. 



1048 Klein and Yang 

Here m is the greatest integer <~k-C~(lnk) I/(x-d), C, is a constant for 
each e independent of k, OAk = Ak\Am, and Dk(S)<~ Cn(ln k) 1/2 for some 
constant C. 

Rermark2.2. It is also true that Wak(xls)>~ --Dk(S)[XAk I for all k. 

For the convenience of the reader we conclude this section with two 
known results from measure theory which we will use in the next section. 
The first is a generalization of the Lebesgue dominated convergence 
theorem.~12) 

Proposi t ion  2.2. Let (X, B) be a measurable space and {#,} a 
sequence of measures on B that converge setwise to a measure #. Let {f,} 
be a sequence of measurable functions converging pointwise of f Suppose 
Ifo[ ~< g and that lim,_~ ~ Sgd#,,=Sgd#< ~. Then 

A measurable space (X, B) is a standard Borel space if there exists a 
complete metric space Y such that B is a-isomorphic to the Borel a-field 
B r  of Y, i.e., there is a bijection from B to Br  which preserves countable 
set operations. The measurable spaces (Q, S) and (X(A), BA) considered in 
this paper are standard Borel spaces. The following proposition has been 
used by Parthasarathy (ref. 13, p. 145) and Preston (ref. 3, p. 27). We 
provide a short proof for the convenience of the reader. 

Proposi t ion 2.3. Let X be uncountable and (X, B) a standard 
Borel space. There exists a countable field B0 ~ B such that B = a(Bo) and 
such that, if #: Bo --* [0, 1 ] is a finitely additive probability measure on Bo, 
then # has a unique extension to a (countably additive) probability 
measure on (it, B). 

Proof. (Z, B) is isomorphic as a measure space to I-I~= 1 {0, 1 } with 
the product Borel a-field. Let B~ be the finite a-field generated by the first 
n factors. Then U,~=1 B, is a countable field. Any finitely additive proba- 
bility measure on U,~_~ B, is consistent on {B,}. The result now follows by 
the Kolmogorov extension theorem. | 

3. PRINCIPAL RESULTS 

Lemma 3.1. There exist functions gl ,  g2, g3 on U~,  integrable with 
respect to any tempered Gibbs state, such that for all k sufficiently large, 
the following hold: 
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(a) (1/IAkl)~ Ixc~Ak[ #Ak(dxls)<~gI(s). 
(b) (1/]Ak[)1~ WAk(XIS) PAk(dxIs)I <~g2(s). 
(C) (1/IAkl) I~ HAk(XIS) #Ak(dxls)l ~<g3(s). 

Remark 3. 1. The integrable bounds in Lemma 3.1 may be chosen 
to hold for all k; we find bounds only for all large values of k in order to 
streamline the proof. 

ProoL Observe that for any function f on X(Ak), 

f f(x) #~k(dxls) =~f(x) exp[--flWAk(XlS)] #Ak(dx) (3.1) 
~ exp[--flWAk(XIS)-] I~Ak(dx) 

Let e > 0 and s e U,. In what follows we identify Ak, Am, and •A =- OA~, as 
in Lemma 2.1. Let 

Z(X)= {10 if x c A  m (3.2) 
otherwise 

Then, using the product structure of vA~, 

f exp[--flWAk(XIS)] #Ak(dx) 

1 
Ix Z(x) exp[--flWAk(xls)] exp[--flHAk(X)] VAk(dx) >> ZAk(~) (~) 

lff  
>I - " e x p [ - f l  WAk(XlS n A~)] 

ZA~(~) ~ (~m) 

X exp[ --filiAl(x)] vA~(dx) v~k\A~(dy) 
z~(~) 

~> f exp( -/%n I XA~I) #A~(dx) 
ZA~(~) 

Therefore, by Jensen's inequality, 

f eXp[--flWAk(XlS)] #A~(dx) In 

-fl~n f ]xA,,I #A,,(dx) + In ZAm(~) -- In ZAk(~) (3.3) 

We next bound ~ IXA~I #A~(dx) using Ruelle's probability estimates 
(Proposition 2.1 ): 

822/71/5-6-14 
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1 
f ]XAml ~Am(dx) [Aml 

= f :  "am{Xam' IXAml > Y Iaml} dy 

1 dy+ exp{-(vyE-6)lAm]} dy< +. 
0 6/7)t/2 

(3.4) 
where 6 and ~ are the constants appearing in Proposition 2.1. Combining 
(3.3) and (3.4) gives 

f exp[--flWAk(xl s)] #xak(dx) In 

>~--flen IAk[+\ 47 ] ]+lnZam((,~)-lnZA~((,~J) (3.5) 

To bound the numerator in (3.1), observe that for any c > 0, and any union 
A of unit cubes in Ak, 

f exp(clxal) [tnj,(dx) 

= i:  #a~{XAk : exp(c [ XA I) > Y } dy 

f:xpE(2c2,al foo exp{-- ~ + 6 [ A [ } d y  < 

< exp (2Ca~TA~) + [exp(6lAI)] Iex~[(ac21ao/~jY-2 dY 

<2 exp ( 3 ~  2cz IAJ) (3.6) 

For any a>~0, it follows from (3.6) and Lemma 2.1 that 

f exp(a Ix[) exp[-  flWAk(X[S)] #~k(dx) 

f exp[flDk(S)Ixea[ ] exp[(flne + a)IxA,l ] ~< #ak(dx) 
"X 1 /2 / r  #xAk(dx) ) 1/2 <~(f exp[2flDk(s)[xen]] llak(dX)) ~ Jexp[2(flne +a)[x]] / 

<2exp[(4fl2Dg(s)2+~) ,OAi+(g(fln~+a)2+~) IAk[ ] (3.7) 
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Using Jensen's inequality and (3.1) gives 

f IXA~I ,ua~(dxls) 

~< In f exp( Ix~l ) #A~(dxls) 

f, r 
~< In j exp Ixl exp[ - fi WAk(XIS)] #Ak(dx) -- In j exp[ - fiWAk(XlS)] l~A~(dx) 

(3.8) 
Combining (3.8) with (3.5) and (3.7) with a = 1 gives 

1 f IXAkl ~Ak(dxls) 

( 4f12D~(s)2 ~ '  I--'~Sc]~ IOAI 4(fine+ 1)2+~+ ln2 ~< 

[ (~)  1 / 2 "  / (_.__._~ x~ 1/2] ,Aml 1 
+ flen 

+\4yrAk[/  J jAil ]Aml 
In ZAm(~) 

1 
+ ~-~  In ZA~(~) (3.9) 

By Lemma 2.1, Dk(s ) <~ Cn(ln k) m. Therefore the right side of (3.9) is 
a quadratic polynomial in n: 

C2(k)n 2 + Cl(k)n + Co(k ) 

where 0 ~< Ci -- supk Ci(k) < oo for i = O, 1, 2 and 

Define with (3.10) 

n=-n(s)=-min{m~Z: se  Urn} 

g l ( S )  = C2n 2 + Cln + Co 

(3.1o) 

If # is a tempered Gibbs state, it is easy to show, using Proposition 2.1, 
that there exists a constant D such that 

/~(U~,) ~< D exp( --7m 2) (3.11) 

for all m sufficiently large. Thus 
2 

fgl(s)~(ds) ~ Z Ci mi#(UCm-1) <~ 
i=0 m=l 

(3.12) 
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To prove part b, observe that, by Lemma 2.1, 

1 
f Wak(xls) #A~(dxls) 

1 g,'~'-~[2Ak(dx[s ) (3.13) 

From part a, the second integral on the right is bounded below by -egl(s). 
To bound the first integral on the right side of (3.13), notice that by 
Jensen's inequality and (3.1) 

f Dk(S)Ixo~l #~k(dxls) 

~< In f exp[Dk(S ) IxoAI ] exp[-flWak(xls)]  #ak(dx) 

- In f exp[- f lWa,(x ls ) ]  #Ak(dx) (3.14) 

Applying (3.5), (3.6), and Lemma 2.1 as before shows that the right side of 
(3.14) is bounded by a polynomial in n(s) which is integrable with respect 
to any tempered Gibbs state. 

On the other hand, by Jensen's inequality and (3.1), 

f I wA (xls)  Ak(dxls) 

<~ In f exp[flWak(xls)] #Ak(dxls) 

= In ~ exp[ +flWak(xls)] exp[-flW~k(xls))] #Ak(dx) 
I exp[ -- fl WAk(XIS))] #ak(dx) 

<flen I A k l  j--lnZam(f,~)+lnZak(~) (3.15) 

where the last inequality comes from (3.5). Dividing both sides of (3.15) by 
fliAkl shows that (1/IAkl)~ WA~(XlS) I~A~(dxIs) is bounded above by a 
linear function in n(s) with coefficients bounded in k. Hence it is bounded 
by a function gE(s) integrable with respect to any tempered Gibbs state. 

By the stability of H(x), 

1 1 J r n[xl+WAk(xls)#~k(dx[s ) (3.16) 
IAkt 
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The integral on the right is bounded below by a linear combination of the 
functions gi(s) and g2(s) from parts a and b. 

To find an upper bound, write 

f flnak(xls) I~a~(dxl s) 

~< In f exp[flHak(XlS)] #Ak(dx[s) 

j" exp[ + flHA~(XlS)] exp[ --flWAk(XIS)] #Ak(dX) 
= In 

exp[--fiWAk(XJS)] #A~(dx) 

= In ~ exp [ + flHAk(X ) ] exp [ --fiHAk(x)] VAk(dX ) 
ZAk(~) S exp[--flWA~(XtS)] ttAk(dx) 

<~flen IAkl+k---~y j j--lnZAm(~)+lAkl (3.17) 

where in the last inequality we have used (3.5). Dividing both sides (3.17) 
by fllAkl shows that 

1 Is) IAkl f HA~(XIs) I~A,(dx (3.18) 

is bounded by a linear function of n(s) with coefficients bounded in k and 
(3.18) is therefore bounded by an integrable function of s. | 

kemma 3.2. (a) For any s ~ U~ 

W~k(xls) 
lim f IA~] #A~(dxls)=O 

(b) For any tempered Gibbs state # 

W(x~fxA~) 

ProoL Part b follows from part a, Lemma 3.1b, and the dominated 
convergence theorem. From (3.15) 

W~k(xls) 
f IAkl  #A~(dxls) ~en(s)(3/7) 1/2 limsup (3.19) 
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where we have used the same notation as in the proof of Lemma 3.1. Since 
> 0 is arbitrary, 

f w~k(xls) 
lim sup #Ak(dx[s) <<. 0 (3.20) 

k ~ oo I A k I  

From (3.5), (3.13), (3.14), and Lemma 3.1a 

f w~(xls) ~(dxl s) 

IAkl -- In f exp[Ok(S))Ix0AI ] exp[--flWAk(xls)] #A~(dx) ~> egl(s) 

-B,sn[(~) '/2 ,AkJ+(~l~)u2]+lnZa..(~)-lnZ~(~) (3.21) 

It is necessary to bound the integral on the right side of (3.21) differently 
than in the proof of Lemma 3.1. We have 

f exp[Dk(s)IXaAI ] exp[--flWAk(XIS)] flAk(dx) 

~< exp[(fl + 1) Dk(S ) IxaAI ] exp(flne[xaJ) I~k(dx) 

Zzk(fl, h + flen, (,~) 
= exp[(fl + 1) Dk(s ) IXaA[ ] fiAk(dx) Z~(fl, h, ~ )  (3.22) 

where /~Ak is the finite-volume Gibbs state for s = ~ with h replaced by 
h + flen. By (3.6) 

f exp[Dk(S)[xea[ ] exp[ --flWAk(xIs)] I~Ak(dx) 

~<2exp 2(fl+ l)E--Dk(S)2+6 fOAl (3.23) 
? ZAk(B, h, (~) 

where 3 and y are the constants from Proposition 2.1 for h replaced by 
h + Ben. Combining (3.23) and (3.21) gives 

f W(x~kl&l L s) ~,~(dxls) 

u2 + \ ~ /  _1 + [Ak[ [d,,[ In ZA~(~)-- eg,(s) >~ -Ben - -  - -  

(2(B+1)  2Dk(s) 2 ~[aA[ ln2  1 In h 
- = + 3  - -  ZAk(B, + &,,, { )  

7 }IA~.I IAkl  lad 
(3.24) 
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Therefore, 

lim inf ~ W(xA~ls) -efln(s) -egl(s) k ~  ~ [Akl ~A~(dxls)>~ 

+ P(t8, h) - P(fl, h + fl~n) (3.25) 

By continuity of the pressure (1~ in h and since e > 0 is arbitrary, 

lira inf[  W(xak[s) k--,~ ~ IAkl #A~(dxls)>~O (3.26) 

Inequalities (3.20) and (3.26) establish part b. | 

Corollary 3.1. For any s ~ Uo~, 

In Za~(s) 
lim - -  - P(/L h) 

Proof. For any k, 

Z A~(~) = "X~(A~) {exp[~WA~(xls) ] } 
exp[ -/~H.~(xl s)] 

ZAAs) 
v~(dx), z.~(s) 

(3.27) 

Taking logarithms and using Jensen's inequality gives 

In ZA~(~) ~> In ZA~(s) + ~ f WA~(x[s) #a~(dx[s) (3.28) 

From Lemma 3.2a, 

1 
limk_~sup ~ In Z Ak ( S ) <~ P(~, h) (3.29) 

Assuming k is sufficiently large and using the same notation as in the proof 
of Lemma 3.1, 

ZAg(s) >~ ~X(Ak) {exp[ --flH Ak(xls) ] } Z(X) v Ak(dx) 

>~ f exp[ --Ben(s)IxAml ] ~Am(dx)" ZAm(~) (3.30) 
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Thus, using Jensen's inequality again shows that 

In Zak(s) ~> In ZAm(~) -- ~nr f IxAml #Am(dX) 

Applying Lemma 3.1a gives 

Klein and Yang 

Thus 

IAk-----[ In ZAk(s) t> --IAml In ZAm(~5) -- enr g l ( ~ )  (3.31) 

1 
lim i n f - -  In Z ak(s) >~ P(r, h) - ~nrgl(~) 
k-. o~ IAk[ 

1 
lim i n f - -  In ZAk(S ) >~ P(r, h) 
g~oo IAkl 

Since e > 0 is arbitrary, 

(3.32) 

f Ho(x + �89 Wa(xlxoc ) #(dx) (3.33) 

is the same for any translation-invariant, tempered Gibbs state/~ for H, rio, 
h, if and only if P(r, h) is continuously differentiable at rio. 

(b) The expectation 

f Ix c~ QI I~(dx) 

(a) The expectation 

Combining (3.32) and (3.29) proves the corollary. | 

We state Lemma 3.3 below without proof. 

I . e m m a  3.3. Let A be a bounded Borel set, F e  ~a ,  n ~> 1, and let 11 
and 12 be closed intervals on the real line with I1 to the right of zero. Then: 

(a) nA(Flsc~Ak)(r,h)~nA(Fls)(fl, h) uniformly for all s~Un, 
fi~I1, and h~I2 as k ~  ~ .  

(b) If A-=AL for some integer L, rcA(HA(X)IS~Ak)(fl, h )~  
nA(H.l(x) ls)(r, h) uniformly for all s ~ U,, fl ~ 11, as k ~ ~ .  

T h e o r e m  3.1. Let Q-= Q0 = Ak= 1 be the unit cube centered at the 
origin. 
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is the same for any translation-invariant, tempered Gibbs state/z for H, fl, 
ho, if and only if P(fl, h) is continuously differentiable at h0. 

Remark 3.2. Theorem 3.1 may be modified. In Eq. (2.1), one may 
assume, if desired, that h = f~/fl for some "chemical potential" h independent 
of ft. In this way flh is independent of ft. With this convention, fl is the 
coefficient of the particle interaction energy and h is, independently, the 
coefficient of the particle number in P(fl, h). Note also that 

�9 1 

by translation invariance of # and Lemma 3.2, so that part a of 
Theorem 3.1 may be reformulated. The restriction that Q = A 1, the unit 
cube, in Theorem 3.1 may be relaxed. Q can be chosen to be any geometric 
solid whose translates partition R d, such as a rectangular solid. The under- 
lying lattice Z a -must then be replaced with another lattice; Ak then 
becomes a union of translates of Q for each k, U~ is then changed, etc. 

ProoL (a) Since P(fl, h) is a convex function of fl, P is differentiable 
on a dense subset of the positive real line. Suppose that P is differentiable 
at ft. For any k, (1/[Ak[)ln ZA,(s) is convex and differentiable with respect 
to fl for any se  U~. From Corollary 3.1, it follows that for any point fl 
where P is differentiable, 

dR lim 1--~ f HA~(XlS) PAk(dxIs ) 

Let # be a translation-invariant, tempered Gibbs state. From the Lebesgue 
dominated convergence theorem and Lemma 3.1 we have 

dP . 1 

B y  the definition of a Gibbs state and Lemma 3.2,  

dP . 1 : l ira  1 --~=J~na ~-~k[fHA~(XlXA2)#(dx) ~-~fHAk(X)/a(dx) (3.34) 

Now write 
HA (x) = [HQ,(x)  + 1 W ( x e  ' I 

i 

=~. [He,(X)+�89189 ) (3.35) 
i 
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where the sums are over all i such that QicAk. Combining (3.34) and 
(3.35) and using the translation invariance of/~ gives 

W'( X Ak I X~) 
1 lim f #(dx) (3.36) 

d~ - f&l 

From Lemma 3.2 

dP= f He(x)+ 2 W(xelxe~ ) #(dx) (3.37) 

Thus (3.33) is the same for all translation-invariant Gibbs states if P is 
differentiable at/3 o. 

Let 
g(x) = HQ(x) + �89 W(xQlxQc) (3.38) 

and let {/3m} be chosen so that /3m~/~O and such that e(.,h) is 
differentiable at each/~m" Let drP/d~ and diP/d[1 denote, respectively, right- 
and left-hand derivatives of P. Then 

are <.2ira de - -  ~ (]~,n, h) = lira f g(x) #m(dx) d/? (/~o, h) ,~ ~ ~ (3.39) 

by (3.37), where #m is a translation-invariant, tempered Gibbs state for H, 
h, /~m. 

The next step is to show that for some subsequence of {#,,}, which we 
again denote by {/1,,}, 

lim f g(x) #m(dx) = f g(x) #(dx) (3.40) 
m ~ o o  

where # is a translation-invariam, tempered Gibbs state for H,/~o, h. Then 
by (3.39) and (3.40), 

drP <~f (3.41) --~ (9o, h) g(x) ~(dx) 

An analogous inequality bounding (dP/dfl)(flo, h) below, together with 
the assumption that g(x) has the same expectation with respect to any 
translation-invariant Gibbs state at fl0, will prove that P is continuously 
differentiable at fl0. 

Let -3 A be the countable field given by Proposition 2.3 for the a-field 
BA. Define 

.3~ = ~ -4.~k (3.42) 
k 
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Since .4~ is countable, some subsequence of {/~m}, which we again denote 
by {/~,~}, converges for each element of .d~. Define/z(A) by 

# (A)=  lim JZm(A ) (3.43) 
rn --r ~3 

By Proposition 2.3, for any fixed k,/~ has a unique extension to/~ak, which 
we again denote by/~. Let F~BAk and s~ U~. Recall that F ' =  {x~X(A): 
x v s ~ F} and in this case F'  is independent of s. Then 

7rA~(F[ s) ~< fr" exp { -- flHak(xls)} VAk(dx ) 

A fF' exp {--fl [--~k] Ix'2+ fl[B +n(s) C(ln+ k) 1/2] [x, } vA,(dx) 

A 
~< max {exp { - / ~  ~ - ~  'x' 2 

+ fl[B+n(s)C(ln+ k)l/2]]x[}" IxleR} VAk(F' ) 

=-- M(fl, h, k, n(s) ) V A~(F') (3.44) 

where we have used Remark2.2, superstability, the 
ZA(s) I> 1 for all s and A, and 

A ~ Ixil2~A Ixil jAkl i 
i~A k i k 

observation that 

It follows from (3.44) that {~Ak(F]s)(flm, h): m =  1, 2, 3,..., and s s  Un}, 
where/~,~ ,L flo as above, is uniformly absolutely continuous with respect to 
the measure on BAk given by cok(F)--= va,(F'). 

From Proposition 2.1 all tempered Gibbs states for a given value of/~ 
and h satisfy Ruelle's estimates for the same values of 7 and 6. It follows 
from the proofs in ref. 9 that the same values of 7 and 6 may be selected 
for the entire sequence of tempered Gibbs states {#,,} given in (3.39) 
corresponding to J~m ~, J~0 (in fact, 7 = floA/4 may be used). 

Let e > 0  be given. Choose n so that ~t,~(UC)<e/2 for all m. Choose 
q > 0 so that ~k(Fls)(/~m, h ) <  ~/2 whenever mk(F)< q and s e U,. Then 

12re(F) = #m(l~ Ak(F] S)(]~m, h ) )  

= f u  n 7f, Al:( f  [ S)(flm , h)  [lm(ds ) .-~ fu~ TC/Ik(F[ S)(j~m' h)  I~m(ds) • ,~ (3 .45)  
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Thus, given any k, the measures {#m} restricted to Bak are uniformly 
absolutely continuous with respect to co~. 

Let A = R  d be a bounded Borel set and let F r  B~. Without loss of 
generality, we may assume A = Ak for some k. Let e > 0 and choose t/ as 
in (3.45). Since a ( A A ) - - - - - B A ,  there exists an A ~-~A such that #(A A F ) <  
and cok (AAF)< t / .  Here A z ~ F = ( A \ F ) w ( F \ A ) .  By the triangle 
inequality, 

I#m(V) - -  #(r)l  <~ [#m(a) -/~(A)I + #m(A A F) + #(A A F) 

<~ [#m(A) - -  #(A)I + 2e (3.46) 

It follows that 

# ( F ) =  lira #re(F) (3.47) 
m ~  

for all F e  ~A. Equation (3.47) shows that #(F) is consistently defined on 
the increasing sequence of a-fields {Bak}. Since these a-fields generate the 
a-field S, /~ has a unique extension to a probability measure on (12, S), 
which we again denote by/~. The translation invariance of # follows from 
the translation invariance of #,, and standard arguments in measure theory. 

We next prove that # is a Gibbs state for rio, H, h. It is routine to 
verify that 

~ A(F! s)(rm, h) ~ n A(FI s)(ro, h) (3.48) 

for each s e U~, each A, and each measurable set F. By the triangle 
inequality, 

1#,,(TzA(F[ s)(flm, h)) - ~(rcA(rl s)(ro, h))l 

112m[ ~ z( FI S ~ Ak )(rm, h) - kt( 7~ A( Vl S ~ Ak)(ro, h)][ 

+ Iltm[rcA(Fls)(rm, h ) - ~ ( F l s c ~ A ~ ) ( r , , ,  h)]l 

+ I#[r~a(rls)(ro, h ) - r t a ( r l s n A k ) ( r o ,  h)][ (3.49) 

It follows from Lemma 3.3 and arguments similar to those leading to (3.45) 
that by choosing k sufficiently large, the last two terms on the right side of 
(3.49) can made arbitrarily small, uniformly in m. By Proposition 2.2 and 
(3.48) the first term on the right side of (3.49) converges to zeros as m ---, oo 
for any fixed k. 

Thus, 

#m(Tt ~( FI S)(flm, h ) ) --* #(Tt A( F [ S)(flO, h ) ) 
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Since we also have 

#m(na(F] S)(flm, h)) = #re(F) --* #(F) 

for any cylinder set F~ it follows that # is a Gibbs state. It is easy to check 
that # is tempered, using the fact that the same constants 7 and 6 may be 
used for each #m. 

It remains to verify (3.40). Note that (3.40) does not follow from 
(3.47), because g(x) is an unbounded function of x. A detailed argument 
using Lemma 3.2, Lemma 3.3b, Proposition 2.2, and the ideas in the proof 
of Lemma 3.1 proves (3.40) and completes the proof of part a, i.e., 

#m(HQ(x) + �89 W(xQ I xQc)) - ,  #( HQ(x) + �89 W(xQ I xQc) ) 

(b) The proof of b follows as in part a with the cylinder function [xQ[ 
playing the role of g(x) and h playing the role of/3. | 

Remark 3.3. Theorem 3.1 may be extended to deal with Gibbs states 
invariant under groups which preserve the algebra of measurable cylinder 
sets, other than the translation group on R d. For example, let G be a group 
of Euclidean motions on R d containing a subgroup of the translation 
group. Assuming that Gibbs states invariant under G exist for each/~ and 
h, the proof of Theorem 3.1 may be modified to show that the pressure is 
differentiable with respect to /~ (resp. h) if and only if all Gibbs states 
invariant under G yield the same expected specific energy (resp. density of 
particles). 

The following corollary is now immediate. 

Corollary 3.2. Suppose the Gibbs state for H, flo, h0 is unique. 
Then the pressure p(/~, h) is continuously differentiable with respect to /~ 
and with respect to h at (/~0, ho). 

Corollary 3.3 below follows from the proof of Theorem 3.1. 

Corollary 3.3. Let #m be a translation-invariant, tempered Gibbs 
state for H, /~,~, h and suppose/~,,, ~/~o > 0. Then the sequence {#m) has 
a subsequence whose limit on any cylinder set F is #(F), where # is a 
translation-invariant, tempered Gibbs state for H, //o, h. An analogous 
statement holds when h,, ~ h, and fl is fixed. 
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